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Markov processes and the distribution
of volatility: a comparison of discrete

and continuous specifications
By S. J. Taylor

Department of Accounting and Finance, University of Lancaster,
Lancaster LA1 4YX, UK (S.Taylor@lancaster.ac.uk)

Two mixtures of normal distributions, created by persistent changes in volatility, are
compared as models for asset returns. A Markov chain with two states for volatility
is contrasted with an autoregressive Gaussian process for the logarithm of volatility.
The conditional variances of asset returns are shown to have a bimodal distribution
for the former process when volatility is persistent that contrasts with a unimodal
distribution for the latter process. A test procedure based upon this contrast shows
that a lognormal distribution for sterling/dollar volatility is far more credible than
only two volatility states.

Keywords: conditional state probabilities; foreign exchange volatility; Leptokurtic
return distributions; Markov chain; mixture distributions; stochastic volatility

1. Introduction

The distributions of asset returns are known to have high peaks, fat tails and
excess kurtosis compared with normal distributions. The standard explanation of
this empirical phenomenon is that the distribution of returns is a mixture of normal
distributions that have different variances. Consider the following factorization of a
return r in excess of its mean µ:

r − µ = σu,

with u ∼ N(0, 1) a standardized normal variable and σ > 0 representing volatil-
ity. This factorization is applicable to all the martingale-difference processes for
returns that are popular in contemporary research literature, including ARCH mod-
els (Bollerslev et al . 1994) and stochastic volatility models (Shephard 1996). With
the additional assumption that σ and µ are independent, which is common and made
in this paper, returns have kurtosis

E[r4]
E[r2]2

= 3
E[σ4]
E[σ2]2

= 3
(

1 +
var(σ2)
E[σ2]2

)
.

Returns then have kurtosis in excess of the normal level, 3, whenever the distribution
of σ has positive variance.

Many distributions for the volatility variable σ have been proposed and, conse-
quently, many distributions for returns r. Influential examples include a linear func-
tion of a Poisson variable for σ2 (Press 1967), an inverted gamma distribution for
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σ2 and a Student distribution for r (Praetz 1972), a lognormal distribution for σ
(Clark 1973) and discrete distributions for σ with two possible outcomes (Ball &
Torous 1983) or more (Kon 1984). However, there has been relatively little research
into methods for inferring the distribution of σ from observed returns.

Two distributions for σ are discussed in this paper and methods are presented
that can be used to decide which of the two distributions best describes observed
returns. These methods can be extended to make comparisons between more com-
plicated distributions. Section 2 defines the two distributions investigated here: σ
has either two possible states or a lognormal distribution. It is shown that these
very different distributions for σ can produce very similar distributions for returns.
Consequently, progress can only be made by considering stochastic processes for
volatility. Section 3 discusses Markov processes for the two-state volatility specifica-
tion, following Hamilton (1988), and AR(1) processes for the lognormal specification,
following Taylor (1986). The corresponding processes for returns are respectively
called the 2N-Markov and LNN-AR(1) processes and there are natural extensions to
continuous-time processes for prices.

Volatility is a highly persistent process for daily and more frequent returns. Such
persistence implies that the probability of the most probable volatility state for the
2N-Markov model, conditional on returns at other times, is often very close to one.
A test procedure developed from this result is described in § 4 and investigated for
time-series of 2500 simulated daily returns. The test criterion identifies the correct
distribution for σ for almost all series when the model parameters have values moti-
vated by empirical studies. Section 5 evaluates the test criterion for 10 years of daily
foreign exchange returns for the sterling/dollar rate. The results show that a log-
normal distribution for sterling/dollar volatility is far more credible than only two
volatility states.

Throughout this paper f is used to represent the probability density function
(PDF) of a random variable, which may be continuous or discrete, and φ is the
density of the standard normal distribution,

φ(x) = (2π)−1/2 exp(−1
2x

2).

2. Univariate mixture distributions

(a) Two volatility states

It may be supposed that the volatility σ equals either a lower level σL or a higher
level σH with σL < σH. Let p be the probability of the lower variance state. Then
the PDF of returns is determined by the four parameters µ, σL, σH, p, and equals

f(r) =
p

σL
φ

(
r − µ
σL

)
+

1− p
σH

φ

(
r − µ
σH

)
.

The moments of this distribution are obtained from E[σn] = pσnL + (1 − p)σnH and
the assumed independence of volatility and standardized returns. In particular, the
returns distribution has mean µ and variance pσ2

L + (1− p)σ2
H. The kurtosis of both

volatility and its logarithm equal p−1(1− p)−1− 3, which equals the normal kurtosis
of 3 when p is 0.5± 1

6
√

3, or approximately either 0.211 or 0.789.
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(b) Lognormal volatility

Alternatively, it may be supposed that the logarithm of volatility is normal with
mean α and variance β2. The PDF of returns is determined by the three parameters
µ, α, β, and can only obtained by numerical integration, for example from

f(r) =
∫
f(σ)f(r|σ) dσ

=
∫ ∞

0

1
σ2β

φ

(
ln(σ)− α

β

)
φ

(
r − µ
σ

)
dσ.

The moments of this distribution follow from E[σn] = exp(nα+ 1
2nβ

2). This returns
distribution has mean, variance and kurtosis, respectively, equal to µ, exp(2α+ 2β2)
and 3 exp(4β2).

(c) Density comparisons and representative parameters

The PDF of returns is symmetric and fat-tailed for both volatility models. The
two models can produce very similar densities for the return r despite the absence
of any similarity in the densities for the volatility σ. A typical value for β is 0.4
when volatility is assumed to be lognormal (Taylor 1986, 1994). The unconditional
mean and variance of returns can be general for much of this paper and they are,
respectively, set to zero and one when comparing models; the representative value
for α is then −0.16.

The two-normal (2N) model has one more parameter than the lognormal (LNN)
model. Consequently, there are many possible ways to select representative parame-
ters for the former model that produce a close density approximation to the latter
model. Representative values for the probability p and the volatility levels σL, σH
can be defined by equating three volatility moments for the 2N and LNN models;
equating values for E[σn] has the same effect as equating values for E[|r − µ|n].

The parameter values used in later sections are obtained by requiring the moments
of the two models to be the same for n = 1, 2, 3. A simple numerical method provides
the solution p = 0.776, σL = 0.7165, σH = 1.6388. The kurtoses for the representative
parameters are 5.46 for the 2N model and 5.69 for the LNN model.

Figure 1 shows the density functions for the returns distributions defined by the
representative parameter values and, for comparison, the PDF of the standard normal
distribution. The maximum difference between the density functions of returns for
the 2N and LNN models is 0.0206 and occurs at the modes. The peak of the LNN
density is slightly higher than the peak of the 2N density and both these peaks are
well above the peak of the normal (N) density. Figure 2 shows differences between
cumulative distribution functions. The maximum difference for the 2N and LNN
distributions is only 0.0052, at r = ±1.23. This is much more than the maximum
difference for the LNN and N distributions, that is 0.0404 at r = ±0.63.

Equating values for E[σ4] instead of E[σ3] provides similar parameters and only a
slightly worse match between the densities of returns. A better match is obtained by
using E[lnσ], but p is then 0.639 and this value is less than typical values discussed
in previous literature. The ratio σH/σL is between 2.2 and 2.4 for all two-normal
parameters that have been obtained by matching the moments of the lognormal
model when β is 0.4.
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Figure 1. Density functions.
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Figure 2. Differences between cumulative distribution functions.

The similarity between the fat-tailed distributions for returns exhibited in figure 1
shows that it will be difficult to use properties of univariate return distributions to
decide which of the two volatility models provides the best description of observed
returns. The task appears to be futile for samples of 2500 daily returns, and conse-
quently it is necessary to consider multivariate distributions.

3. Multivariate mixture distributions

Next consider specifications of stationary stochastic processes for n consecutive
returns {rt, 1 6 t 6 n}. Without loss of generality, expected returns are assumed to
be zero. It is well known that appropriate processes have positive autocorrelations
for functions of |rt| and that this occurs when there is positive dependence in the
process for volatility (Taylor 1986).

Let ρs,τ = corr(st, st+τ ), τ > 0, denote the autocorrelations of a stationary process
{st}. The autocorrelations of |rt| = σt|ut| are proportional to the autocorrelations of
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volatility σt as follows (Taylor 1986, p. 73):

ρ|r|,τ =
2(A− 1)
πA− 2

ρσ,τ with A =
E[σ2]
E[σ]2

.

(a) Lognormal volatility

The process for ln(σt) that has received the most attention is the Gaussian first-
order autoregressive process, with mean α, variance β2 and autocorrelations Φτ .
Then

A = exp(β2),

ρσ,τ =
[exp(β2Φτ )− 1]

[exp(β2)− 1]
∼= Φτ .

Representative values for β and Φ are 0.4 and 0.98, respectively. The first autocorrela-
tions for the processes |rt|, ln(σt) and σt are then 0.201, 0.98 and 0.978, respectively.
The derived model for returns is called the LNN-AR(1) model in this paper. The
mathematical properties of the returns model were first discussed in Taylor (1982)
and developed further in Taylor (1986). See Shephard (1996) for a recent survey of
the LNN-AR(1) model and extensions.

(b) Two volatility states

The logical specification of a stochastic process for two-state volatility random
variables is a Markov chain for {σt} with transition probabilities

qLH = P (σt+1 = σH | σt = σL),
qHL = P (σt+1 = σL | σt = σH).

The probability of the lower volatility state, p, and the transition probabilities are
constrained by the formula pqLH = (1− p)qHL. The autocorrelations of the volatility
process are given by

ρσ,τ = ψτ ,

ψ = 1− (qLH + qHL) = 1− qLH

1− p = 1− qHL

p
.

Representative values for p and ψ are 0.776 and 0.98, respectively, and then qLH and
qHL are 0.004 48 and 0.015 52, respectively. Changes of state are infrequent because
the volatility process is highly persistent. In the lower volatility state, the expected
time until the next change of state is 1/qLH = 223 time units. By also selecting
σL = 0.7165 and σH = 1.6388, the autocorrelations of |rt| are almost the same as for
the autoregressive lognormal model.

The model for returns derived from the Markov chain for volatility is here called
the 2N-Markov model. Hamilton (1988) provides the first analysis of this model,
and its forecasting potential is studied in Pagan & Schwert (1990). Theoretical and
empirical results for the general Markov model having two or more volatility states
are provided by Ryden et al . (1998).
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(c) Conditional probabilities for two states

The probabilities of the volatility states conditional upon sets of returns are used
extensively in this paper. Let Bt = {rT , 1 6 T < t} be all returns observed before
time t. In the following equations, the summations

∑
are over the two possible

outcomes for σt−1. The conditional probability distribution of σt given Bt is

f(σt | Bt) =
∑ f(σt−1, σt, Bt)

f(Bt)

=
∑ f(Bt−1)f(σt−1 | Bt−1)f(rt−1 | σt−1, Bt−1)f(σt | σt−1, Bt)

f(Bt)

=
∑
f(σt−1 | Bt−1)f(rt−1 | σt−1)f(σt | σt−1)∑

f(σt−1 | Bt−1)f(rt−1 | σt−1)
.

Consequently, the conditional probabilities of the lower state given past returns,
denoted

pBt = P (σt = σL | Bt),
can be calculated recursively from pBt−1, rt−1 and the parameters σL, σH, qLH and
qHL that define the volatility process, commencing with pB1 = p.

Note that the likelihood of a set of returns can be calculated without difficulty
from the product of conditional densities

f(rt | Bt) =
∑

σt=σL,σH

f(rt | σt)f(σt | Bt),

that are functions of the probabilities pBt , the returns rt and the volatility parameters.
Let At = {rT , t < T 6 n} be all returns observed after time t. As all the processes

are reversible, it is straightforward to derive the further probabilities

pAt = P (σt = σL | At)
recursively from pAt+1, rt+1 and the volatility parameters. The conditional probabili-
ties given all returns except the return at time t follow from

f(σt | At, Bt) =
f(Bt)f(σt | Bt)f(At | σt)

f(At, Bt)

=
f(Bt)f(σt | Bt)f(At)f(σt | At)

f(At, Bt)f(σt)
.

Hence it can be shown that

pABt = P (σt = σL | At, Bt) =
(1− p)pAt pBt

(1− p)pAt pBt + p(1− pAt )(1− pBt )
.

(d) Examples of conditional probabilities

Time-series of 2500 returns have been simulated from both the 2N-Markov and
the LNN-AR(1) models, using the representative parameters, followed by calculation
of the conditional probabilities pBt , pAt and pABt . These probabilities are often very
near either 0 or 1 because of the high persistence in the simulated processes; the

Phil. Trans. R. Soc. Lond. A (1999)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Markov processes and the distribution of volatility 2065

1

0.8

0.4

0.6

0.2

0
10.8

cumulative proportion

co
nd

iti
on

al
 p

ro
ba

bi
lit

y

0.60.40 0.2

Figure 3. Ranked probabilities for the 2N-Markov model.
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Figure 4. Ranked probabilities for the LNN-AR(1) model.

extreme values of pABt are 0.000 07 and 0.999 78. The probabilities pABt are more
often near 0 or 1 than the probabilities pBt . Only 14.7% of the pABt are in the interval
[0.01, 0.99] for the 2N-Markov model, with 16.6% below 0.01 and 68.7% above 0.99.
The corresponding frequencies for the LNN-AR(1) model are 36.2% in the interval
[0.01, 0.99], 13.1% below 0.01 and 50.7% above 0.99.

Figure 3 illustrates the cumulative distributions of the probabilities pABt for 10
simulations of 2500 returns for the 2N-Markov model. The points on the figure show
the proportions of the pABt , measured on the horizontal axis, that are less than
levels measured on the vertical axis; pABt is measured on the vertical axis and its
cumulative distribution function on the horizontal axis. It can be seen that the
proportions of very low and very high pABt vary substantially from series to series.
This is a consequence of the high volatility persistence, which causes the proportions
of time spent in the two volatility states to vary substantially across the 10 series.

Figure 4 shows the same information for 10 simulations of the LNN-AR(1) model.
The slopes of the central sections of the curves are much less steep on figure 4 than
on figure 3, reflecting the higher occurrence of probabilities pABt between 0.01 and
0.99.
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4. Criteria that distinguish the volatility models

(a) The problem

Now consider the problem of identifying the volatility model, given a time-series of
observed returns and the assumption that the returns process is either 2N-Markov
or LNN-AR(1). This problem has been investigated for series of 2500 returns with
the objective of making the correct identification for 99% of simulated series. It is
tempting to suppose that the high frequency of probabilities pABt near to 0 or 1 for the
2N-Markov model will enable the problem to have a simple solution. Plausible test
statistics can be constructed from (a) the kurtosis of those returns for which pABt >
0.999; (b) the first-lag autocorrelation of the sub-series {|rt|} for which pABt > 0.999;
and (c) the proportion of the pABt in intervals such as [0.01, 0.99]. However, these
and other simple methods do not identify the correct volatility model with sufficient
accuracy, particularly when it is necessary to estimate the model parameters from
the data.

A likelihood-ratio can be computed for the two volatility models after maximizing
two likelihood functions. There are no difficulties for the 2N-Markov model for which
an EM algorithm can be used (Hamilton 1990). However, sophisticated numerical
algorithms are required for the LNN-AR(1) model (see Danielsson 1994; Shephard
1996; Kim et al . 1998). The likelihood functions are not nested and they have different
numbers of parameters. It is quite probable that most people will prefer the simpler
approach that is now described.

(b) The conditional variance test

Let ht denote the variance of a return conditional upon previous returns. For the
2N-Markov model these variances are simply

h
(2N)
t = pBt σ

2
L + (1− pBt )σ2

H,

and they are constrained to be in the interval [σ2
L, σ

2
H]. The distribution of the vari-

ances is bimodal, with most outcomes close to either σ2
L or σ2

H. In contrast, the
conditional variances for the LNN-AR(1) model are unimodal and only constrained
to be positive. Consequently, the two models will provide clearly different conditional
variances from the same data. As the conditional variances from the wrong model
contain no incremental information beyond that supplied by the correct model, an
encompassing regression test should be able to identify the correct model.

There are three initial steps in the proposed test. First, data {rt} are standardized
to have zero mean and unit variance. Second, the four parameters of the 2N-Markov
model, σL, σH, p, ψ, are estimated by maximizing the likelihood of the standardized
data, with the unconditional variance constrained to be unity, so pσ2

L+(1−p)σ2
H = 1.

Third, the three parameters of the GARCH(1,1) model, known to have very similar
mathematical properties to the LNN-AR(1) model (Taylor 1994), are estimated by
quasi-maximum likelihood after supposing the conditional distributions of returns
are N(0, ht) with ht = c + ar2

t−1 + bht−1; the non-negative parameters a, b, c are
constrained to have a+ b+ c = 1.

The parameter estimates are then used to obtain conditional variances for the
standardized returns rt. These are conditioned either on previous returns Bt or on
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Table 1.

average
identifications estimates of︷ ︸︸ ︷ ︷ ︸︸ ︷

model correct wrong β1 β2

2N-Markov 2497 3 1.05 −0.05
LNN-AR(1) 2308 192 0.30 0.70

previous and future returns Bt + At. In the latter case, for the GARCH specifica-
tion, the conditional variance is approximated by the average of var(rt | Bt) and
var(rt | At); the terms var(rt | At) are obtained from the approximation

ht = c+ ar2
t+1 + bht+1.

Given time-series of conditional variances h(2N)
t and h(GARCH)

t , the final step is to
estimate the regression

E[r2
t ] = β0 + β1h

(2N)
t + β2h

(GARCH)
t

by ordinary least squares. The volatility model is then identified as 2N-Markov if and
only if β1 > β2. There are doubtless many ways to enhance the test procedure. Here
the emphasis is on providing a straightforward method that avoids computational
complexity.

(c) Performance of the test

The test has been evaluated for 5000 simulated series of 2500 returns. Half of
the series are generated by the 2N-Markov model and the other half by the LNN-
AR(1) model. The representative parameters are used to obtain the simulated series,
that are then standardized and used to obtain estimated parameters and conditional
variances. The first 50 returns are omitted from the regression when variances are
conditioned on Bt and the last 50 are also omitted when conditioning upon Bt +At.

The information in table 1 summarizes the results when the variances are con-
ditioned on Bt. In very few cases, a mistake is made about data generated by the
2N-Markov model. The error rate for the LNN-AR(1) model is not satisfactory and
is caused by the high average weight given to β1.

Satisfactory results are obtained when the variances are conditioned on Bt + At,
as shown in table 2. The overall error rate is then 64/5000 = 1.28%. Few series
identify the model incorrectly for both the test using information Bt and the test
using information Bt + At. The two tests give the same result for 4775 of the 5000
series and they give conflicting results for the other 225 series. Only 17 of the 4775
series that give the same identification provide a wrong identification. The error
rate, conditional on the same identification, is less than 0.4% for the simulation
experiment.

Figures 5 and 6 shows the estimates of (β1, β2), obtained using the information
Bt+At, respectively, for the 2N-Markov and LNN-AR(1) models. The estimates are
scattered across large regions, particularly for the 2N-Markov model, although 98%
of the estimates are on the correct side of the line β1 = β2 on figure 5 and more than
99% on figure 6.
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Table 2.

average
identifications estimates of︷ ︸︸ ︷ ︷ ︸︸ ︷

model correct wrong β1 β2

2N-Markov 2451 49 1.10 −0.13
LNN-AR(1) 2485 15 0.15 0.97
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Figure 5. Estimated coefficients for the 2N-Markov model.
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Figure 6. Estimated coefficients for the LNN-AR(1) model.
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5. Results for the sterling/dollar rate

The conditional variance test has been performed for 2529 sterling/dollar returns
from December 1982 to November 1991 inclusive, calculated from Chicago futures
prices pt as rt = ln(pt/pt−1). The estimates of (β1, β2) are (0.19, 0.90) using previous
returns to calculate the conditional variances, and (0.04, 1.28) using previous and
future returns. As β2 > β1 for both regressions, these results favour the LNN-AR(1)
model.

Foreign exchange returns are known, however, to be more variable following week-
ends; Chicago futures returns are also more variable following US holidays (Tay-
lor 1994). To control for these effects, a second set of estimates are obtained from
returns that are standardized according to six categories: returns that include a hol-
iday period, Monday returns that do not include a holiday, etc. The estimates of
(β1, β2) change by small amounts, to (0.15, 0.94) and (0.02, 1.30), for conditional
variances obtained first from previous returns and second from previous and future
returns. The estimates (0.02, 1.30) are to the left of all the dots on figure 5 for the
2N-Markov model, while they are not far from the central group of dots on figure 6
for the LNN-AR(1) model, although β1 + β2 = 1.32 is relatively high. The empirical
evidence is overwhelmingly in favour of the LNN-AR(1) model if a choice must be
made between this model and the 2N-Markov model.

The parameter estimates for the 2N-Markov model, estimated from returns stan-
dardized by day of the week, are σL = 0.756, σH = 1.461, p = 0.726 and ψ = 0.880.
The ratio σH/σL is estimated as 1.93, less than the 2.29 for the representative param-
eters, while the estimate of p is only slightly less than the representative level of 0.776.
The kurtosis is only 4.46 for the estimated model, compared with 5.46 for the repre-
sentative parameters and 5.87 for the empirical data. The estimate of the persistence
parameter ψ is surprisingly low and less than the estimates obtained from simulation
of the 2N-Markov and LNN-AR(1) models. However, the maximum log-likelihood as
a function of ψ is similar for a wide range of values for ψ; a two-sided 95% confidence
interval includes 0.95.

The estimates of the GARCH(1,1) parameters are a = 0.042 and b = 0.943, giving
a persistence estimate of 0.985, which is similar to the representative level of 0.98.
For the LNN distribution, matching the moments of absolute standardized returns
gives an estimate of β equal to 0.411, which is close to the representative level of 0.4.
The fitted kurtosis is then 5.90 and thus very near to the empirical quantity, 5.87.

6. Concluding remarks

To make inferences about the distribution of volatility it can be necessary and suf-
ficient to consider properties of multivariate return distributions. The high positive
correlation between volatility on nearby days, known as volatility persistence, makes
it possible to calculate conditional variances whose distribution provides useful infor-
mation about the distribution of volatility. In particular, reliable choices can be made
between a two-state distribution and a lognormal distribution for volatility. More
complicated distributions for volatility may be more appropriate. One possibility is
that returns are a mixture of three (or more) normal distributions. Another is that
returns are a mixture of two (or more) Student-t distributions whose scale parame-
ters are determined either by a discrete or a lognormal distribution. All of these and
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many other possibilities can be investigated by adapting the methods described in
this paper.
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